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ABSTRACT:

Highlights on Polnean£'¿> neseanch eoncennlng ¿emlconvengent 
benlejs one given In this papen. The pnobtem o i the vanishing Hess
ian Zó analyzed with negand to both linean and non-Linean diseñen 
tlat equations In a special case studied by that authon, showing 
that the neiatlonships between penlodlc and ionmat solutions o£ the 
thnee-body pnobtem should be Investigated mone closely. In this 
connection, iunthen Investigations should also take Into account 
Bannon's nesults neienned to the pnobtem o¿ nonmatlzatlon o¿ the 
Hamiltonian In canonical systems.

1. Let us consider the following canonical system of differential 
equations with two degrees of freedom:

(A _ Bf ixi.t
olt ott

where F, the Hamiltonian depends on a small parameter p. It foll
ows from elementary considerations that F admits a development of 
the form: __ _ z

(t) *1 “ = t"0 + * - - • ‘ •
where Fo depends only the x set of variables, meanwhile the remain 
ing Fi (i=l, 2, 3 ...) depend on the x set as well as on the y set 
of variables. (The y’s being periodic functions with period 211).

The question of integrals of system (1) in Celestial Mecha
nics is closely connected to the vanishing of the Hessian

cc = o
X * /

This is almost a general fact in the three-body problem the res
tricted three-body problem being an exception. With regard to pla
netary theory we shall refer later to a result obtained by Moser 
and Siegel.

The inmediate consequence of the vanishing of H(FO) is that 
the series which are solutions of system (1) can only satisfy them 
formally. I have treated these last two problems in several previ
ous papers.
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2. Let us new pay attention to the following linear differential 
equation due to Gylden:

x olt2where q and q are sane constants. Equation (4) follows from ano
ther differential equation due to Gylden:

•)
where is the undisturbed value of the mean longitude: p is the 
difference between the disturbed and undisturbed values of the 
quantity

u ~ r

r being the geocentric distance of the body. (The Moon). B is the 
lunar disturbed lunar function.

The differential equation (4) is obtained from the nan-linear 
equation (5) by taking an appropriate term from B; after this term 
has been linearized, the remaining terms of B are neglected. Equa
tion (4) follows, then inmediatly. This equation (4) can be brou
ght to the canonical form (1) by means of elementary transforma
tions of variables. In this particular case the Hamiltonian takes 
the form:

We have clearly
- Xzl

and then

However, our linear differential equation (4) has periodic 
solutions, the nature of which has extensively by studied by Poin
caré and others.

Let us now turn our attention to the non-linear differential 
equation (Gylden) 

which, clearly, is another form of writing equation (5); 4» is here 
a function which can be developed in powers of the variable x, and 
it is also expressed in terms of the following arguments:

where: = 2

When we write:
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where ip has the same properties as <p. Let us now assume that we ha
ve replaced X¿t by y in q^cos 2t, tp and ip. By introducing n-1 auxi
liary variables *3,  ..... xn, and putting:

($) jg _ «y/ +- Qf-

we obtain the following canonical system:
dx

(q) M d±
d x< SF
oti:

By putting: dt

X = -h

Ó "

we have that:
7:01^ <v r, oUj!

F will beis 
to

periodic with respectan exact differential, and then, 
the y’s. We shall have:

■3-X-+ M1 =
'J

a is a small parameter. When a = 0, 
"E -- V -

s ep.(
we get:

% ’ Z A; X* ;

Fo depends here on the x set as well as on the y set. The last step 
is to seek an undisturbed Hamiltonian Fo where the y’s be absent. 
By taking now the y’s such that:

Jib +
where the X^ and co: are constants; we shall also have

and when: 

i > 2.

BOL.N°26. ASOC.ARG. PE ASTR. 155



we can construct a new Hamiltonian F such that for a = 0 we get:
(io) = ^x’ - V r \ - A 2 Xi - . . .. - A v

corresponding to the set of differential equations

C") cHi. _
ol't

3F 41*  - Ilf,
*3

Clearly:

i = 0

and consequently equation (6) admits only formal solutions. It is 
then evident that the systems (1), with two degrees of freedom, and 
respectively, system (11) with n degrees of freedom have resp. pe
riodic solutions and formal solutions, despite that in both cases 
the Hessian H(FO) - vanishes. It should be remembered here that e- 
quation (4) is a particular case of equation (6), when a is put e- 
qual to zero.

We should new mention here an important result obtained by Po
incaré in his search of differential equations of Celestial Mecha
nics. He has shewn that equations of the form:

where a is a positive constant, y a small parameter, and | is a po
wer series in the parameter y, the coefficients of which depend on 
trigonometrical terms with X¿t as arguments, will admit convergent 
solutions in the following two cases:
1) When <t> depends on only one argument Xt, convergences takes place 
when a is a positive (or negative) number.
2) When 4 depends on several (finite number) of arguments X¿t, con
vergence takes place only when a is positive.

We shall point put finally in this paragraph that Siegel and 
Moser has succeeded to construct planetary theories with a non-vani 
shing Hessian Fo. The series of Celestial Mechanics do converge in 
this case then.

There is still another way of approaching the problem of con
vergence in Celestial Mechanics. In fact, given the Hamiltonian: 

H =. pl t A 2: px 4- A- 4, J P1 H

where the constant term and the linear periodic terms in q^ and q2 
are absent. If X1/X2 is irrational, for any preassigned integer n 
the Hamiltonian (12) can be reduced to the form:
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It is then possible to eliminate periodic terms up to an arbi
trarily high order, although the circle of convergence diminishes 
in each step. Assuming new that by a oononical (convergent) trans
formation we can write a new Hamiltonian z

M(n-v)-- AP¿+ BRPZ +-
v A.j P/R. H (P)

is can be asserted (Barrar) that for a given Bjj (q-j_, q2) and given 
E>0, there are arbitrarily small C¿j (qj_, q2) such that the trans
formation to normal form of

+ £ I3¿¡4-
will not converge in a whole neighborhood of the origin.

4. As a last point I would like turn my attention to a remarkable 
differential equation which appears in planetary theory. Hie equa
tion reads: z %
0*)  ÓL?*-  * X = °

where x = E - Eq is the difference between the disturbed and undis
turbed values of the eccentric anonaly. P(t) is a trigonometric se
ries in multiples of the argument E, the coefficients being powers 
of the eccentricity. P(t) also contains one or several terms with 
the disturbing mass as a factor. The process of obtaining this dif
ferential equation has been described in a previous paper (Altavis
ta) . Equation (13) follows from the more general one:

Cl*t)  4- f V (V't)

where <f> is the disturbing function, p is the disturbing mass, and 
?o(t) is a trigonometrical series in multiples of the argument E; 
the coefficients are powers of the eccentricity. This equation (14) 
can be obtained by applying to the general equations of the three- 
body problem in rectangular coordinates, the method of the varia
tion of the parameters in the second version of it, as devised by 
Lagrange himself. Then a selected term is taken from the right-hand 
side of equation (14) and then linearized. This new linear term can 
then be combined with the linear term of the left-hand side of equa 
tion (14) and equation (13) follows at once when the remaining 
terms from the right-hand side of equation (14) are neglected. The 
same process can, of course be applied to several terms of the se
cond member of (14).

Equation (13) is new a linear differential equation with a pe
riodic coefficient, and its solutions may be stable or unstable ac
cording to the particular values of the parameters. The convergence 
(or divergence) of solutions takes place for seme finite and conti
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nuous ranges of the parameters. It is naturally interesting to find 
out the quality of the solutions for the remaining orbital elements 
a, e, I, w, Q, and e respectively. With this object we must pay at
tention to the set of linear variational equations set up by Iagran 
ge for solving,this problem. These equations read:

where the óx¿ are respectively the variations of the directional co 
sines Px, Py, Pz, Qx, Qy, Qz, the semi-major axis a, the semimenor 
axis bf and*the  eccentricity e. The coefficients in equations (15) 
depend on the undisturbed values of the keplerian elements and 
y(j) (E) contains the disturbed value of the eccentric anomaly as 
well. We then have six equations with eight unknowns. The set (15) 
can be simplified by using the well-known relationships

By applying appropriate factors to system (15) and taking into 
account relationships (16) one can get the new system:

E

Here the new unknowns are the semi-major axis a, the eccentricity e 
and, for instance, the variations of the directional cosines Q^, 
Qy, Qz. As we have here only four equations with five unknowns, we 
can complete it by adding the equation:

where

with:

the index 0 refers to the undisturbed values of the elements. We ha 
ve also:
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(te) & a / 
c# nE etf-

According to the principles settled by Lagrange in his second 
version of his method of the variation of the parameters we must 
apply to (18) the linear operator 6, keeping fixed the time t, so 
as to obtain the fifth variational equation which must be added to 
system (17) for solving the problen. It is new clear that if the so 
lution <SE given by equation (13) is convergent, the variational e- 
quation will provide convergent solutions for the remaining set of 
keplerian elements. It follows, from the above discussions, that 
the vanishing of the Hessian is not an essential point to set up 
the convergence of the solutions of the planetary set of differen
tial equations.

We should also remark an important difference between both pro 
cesses for obtaining equations (4) and (13) respectively:

In fact, equation (4) follows from equation (5) whose linear 
term has a (secular) factor 1 multiplying the linear term. On the 
other hand the coefficient P(t) in equation (13) appears after com
bining Po(t) from (14) plus a term from the second member of this 
same equation. In other words, the coefficient of the linear term 
in equation (13) has a trigonometrical structure from his very ori
gin.

It is clear fran the above discussions, that the solution gi
ven by equation (13) improve the results provided by the oldest me
thods. In this sense, the merit of Lagrange's method of the varia
tion of the parameters in his second version must be emphasized.
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