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ABSTRACT :

Hightights on Poincaré's nesearch concerning semiconvergent
sernies are given in this paper. The problem of the vanishing Hess-
dan 48 analyzed with nregand to both Linear and non-Linean difgeren
tial equations in a special case studied by that author, showing
that the nelationships between periodic and formal s02utions 0f the
three-body problem should be investigated more closely. In this
conneetion, furnther investigations should also take into account
Bavwan' s nesults neferved to the problem of nommalization of the
Hamiltondian in canonical systems.

1. Let us consider the following canonical system of differential
equations with two degrees of freedom:
({3 O_‘_‘)ﬁ: -‘Q-E _d_':ak;__g—E L A
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where F, the Hamiltonian depends on a small parameter u. It foll-
ows fram elementary considerations that F admits a development of
the form:

o) FoR o pFia pFr oo

where Fgy depends only the x set of variables, mearwhile the remain
ing Fy (i=1, 2, 3 ...) depend on the x set as well as on the y set
of variables. (The y's being periodic functions with period 27).

The question of integrals of system (1) in Celestial Mecha-
nics is closely connected to the vanishing of the Hessian

?2F,
() H(F) = {ax X J

This is almost a general fact in the three-body problem the res-
tricted three-body problem being an exception. With regard to pla-
netary theory we shall refer later to a result cbtained by Moser
and Siegel.

The inmediate consequence of the vanishing of H(F,) is that
the series which are solutions of system (1) can only satisfy them
formally. I have treated these last two problems in several previ-
ous papers.,
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2. Iet us now pay attention to the following linear differential
tion due to Gylden:

2 2
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mereqzmﬁqlaresmecmlstants. Equation (4) follows from ano-
ther differential equation due to Gylden:

2

Ol Yo
where v, is the undisturbed value of the mean longitude: o is the
difference between the disturbed and undisturbed values of the
quantity 1

T

r being the geocentric distance of the body. (The Moon). B is the
lunar disturbed lunar function.

The differential equation (4) is obtained fram the non-linear
equation (5) by taking an appropriate term from B; after this term
has been linearized, the remaining terms of B are neglected. Equa-
tion (4) follows, then immediatly. This equation (4) can be brou-
ght to the canonical form (1) by means of elementary transforma-
tions of variables. In this particular case the Hamiltonian takes
the form: ‘
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We have clearly

=r
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and then: 2 ° 9\-
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However, our linear differential equation (4) has periodic .
solutions, the nature of which has extensively by studied by Poin-
caré and others.

Let us now turn our attention to the non-linear differential
equation (Gylden)

od%x 2
(:('} ‘a‘}:‘; +C9t—@{4°”zt)x= 0((9(.‘!*)
which, clearly, is another form of writing equation (5); ¢ is here
a function which can be developed in powers of the variable x, and
it is also expressed in terms of the following arguments:

Mt At LA

where: A2=2

When we write:
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where ¢ has the same properties as ¢. Let us now assume that we ha-
ve replaced Ajt by y in gqjcos 2t, ¢ and y. By introducing n-1 auxi-
liary variables Xor Xgr seesee Xne and putting:

(%) ‘F=:§)i_o<\£+_§cq‘~qhm*&z)—f?\;’(l

we aobtain the following cancnical system:

dr _ 2F dy _ _°F
(c‘) at 9‘3 dxt = o X
dre  2F di L 28 (zres
. % o4y ot \ -
By putting: o
X - ,i_qzx, Lo M,
\:( N
Te A NEK A
we have that:

is an exact differential, and then, F will be periodic with respect
to the y's. We shall have:
FXTHYT = TGK
aisasnallparameter.vmen5=0,w¢get:
T, - gr- B mesty vy, - EACK
7
Fo depends here on the x set as well as on the y set. The last step
is to seek an undisturbed Hamiltonian F, where the y's be absent.
By taking now the y's such that:‘

where the )‘i and w: are constants; we shall also have
"a'l = - L\t + 'CU— and when:

x=x]'.. yi=y'. is> 2.
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we can construct a new Hamiltonian F such that for o = 0 we get:

(10) T o« he-Wal- Axo - A,
corresponding to the set of differential equations
! \ AN
U dlc_t = £| 0_\:5_; D - — (L:l‘z‘...\«)
y  ex o M- T
Clearly: [
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and consequently equation (6) admits only formal solutions. It is
then evident that the systems (1), with two degrees of freedom, and
respectively, system (11) with n degrees of freedam have resp. pe-
riodic solutions and formal solutions, despite that in both cases
the Hessian H(Fo) - vanishes. It should be remembered here that e-
quation (4) is a particular case of equation (6), when o is put e-
qual to zero.

We should now mention here an important result obtained by Po-
incarg in his search of differential equations of Celestial Mecha-
nics. He has shown that equations of the form:

R

%&;f‘“?‘ ‘/'( Le(,'pltlf”)
where o is a positive constant, u a small parameter, and ¢ is a po-
‘wer series in the parameter u, the coefficients of which depend on
trigonametrical terms with Ait as arguments, will admit convergent
solutions in the following two cases:
1) when ¢ depends on only one argument it, convergences takes place
when o is a positive (or negative) number.
2) When ¢ depends on several (finite number) of arguments Ait, con-
vergence takes place only when a is positive.

We shall point put finally in this paragraph that Siegel and
Moser has succeeded to construct planetary theories with a non-vani
shing Hessian Fo, The series of Celestial Mechanics do converge in
this case then.

There is still another way of approaching the problem of con-
vergence in Celestial Mechanics. In ogact, given the Hamlltoman

(l..// H . A\F’H‘}zf’x LZ’F&"&(C‘*‘) )F‘P‘

where the constant term and the linear periodic terms in q; and gp
are absent. If A\1/)2 is irrational, for any preassigned integer n
the Hamiltonian (12) can be reduced to the form:

H e Aupo+ Aopy + i A "P D!+ ZALH@ &)
D‘lpi L+J2.
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It is then possible to eliminate periodic terms up to an arbi-
trarily high order, although the circle of convergence diminishes
in each step. Assuming now that by a cononical (convergent) trans-
formation we can write a new Hamiltonian

H(Pi%) }P—;—(\ P+ AP+ BRE +CP +
.\.i Atop p = H(_p)

A.+3r-
is can be asserted (Barrar) that for a given Bl] (@1, 92) and given
e>0, there are arbitrarily small C; 1 (g1, g2) such that the trans-
formatlon to normal form of

'A"q'!—e B\,‘ (,C‘}ch"’ ) + CLJ (91 |q >

will not converge in a whole neighborhood of the origin.

4. As a last point I would like turn my attention to a remarkable
differential equation which appears in planetary theory. The equa-
tion reads: o (&
X -
(_I B) -IF_ + (— ) x=0

where x = E - Eg is the difference between the disturbed and undis-
turbed values of the eccentric anomaly. P(t) is a trigonometric se-
ries in multiples of the arqument E, the coefficients being powers
of the eccentricity. P(t) also contains one or several terms with
the disturbing mass as a factor. The process of obtaining this dif-
ferential equation has been described in a previous paper (Altavis-
ta). Equation (13) follows from the more general cne:

(2 Rx = w(xt)

where ¢ is the disturbing function, u is the disturbing mass, and
Po(t) 1s a trigonametrical series in multiples of the argument E;
the coefficients are powers of the eccentricity. This equation (14)
can be obtained by applying to the general equations of the three-
body problem in rectangular coordinates, the method of the varia-
tion of the parameters in the second version of it, as devised by
Lagrange himself. Then a selected term is taken from the right-hand
side of equation (14) and then linearized. This new linear term can
then be cambined with the linear term of the left-hand side of equa
tion (14) and equation (13) follows at once when the remaining
terms from the right-hand side of equation (14) are neglected. The
same process can, of course be applied to several terms of the se-
cond member of (14).

Equation (13) is now a linear differential equation with a pe-
riodic coefficient, and its solutions may be stable or unstable ac-
cording to the particular values of the parameters. The convergence
(or divergence) of solutions takes place for same finite and conti
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nuous ranges of the parameters. It is naturally interesting to find
out the quality of the solutions for the remaining orbital elements
a, e I, w, 2, and e respectively. With this object we must pay at-
tention to the set of linear variational equations set up by Lagran
ge for solving 3‘.:his problem. These equations read:

Z—:‘ WkU) §'Xk =0
QS) i Xg(i) 57&': Y(”(E)SE

where the 6xj are respectively the variations of the directional co
sines Py, Py, Pz, Ox Qy, Qz, the semi-major axis a, the semimenor
axis b, and the eccentricity e. The coefficients in equations (15)
depend on the undisturbed values of the keplerian elements and
v(3) (E) contains the disturbed value of the eccentric anamaly as
well. We then have six equations with eight unknowns., The set (15)
can be simplified by using the well-known relationships

DXZ'\' P\; + Paz = I

z rd 2

B Qe+ P\;Q\; “’PEQZ: 0
By applying appropriate factors to system (15) and taking into
account relationships (16) one can get the new system:
t

s x("(&) 57(':‘ -0
t=1

\ 2z x{; ¥
&?) z X{O)E)(L‘ _ y

Here the new unknowns are the semi-major axis a, the eccentricity e
and, for instance, the variations of the directional cosines Qx’
Qyr Oy. As we have here only four equations with five unknowns, we
can camplete it by adding the equation:

(3 2 2( 2 _ 1

where

‘Cise

\/' Z v 2 . 2z 2
with: ¢

Xg =
the index , refers to the undisturbed values of the elements. We ha
ve also:

/
(19) e = & (- eoapE/)
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dt e "

According to the principles settled by Lagrange in his second
version of his method of the variation of the parameters we must
apply to (18) the linear operator §, keeping fixed the time t, so
as to obtain the fifth variational equation which must be added to
system (17) for solving the problem. It is now clear that if the so
lution ¢E given by equation (13) is convergent, the variational e-
quation will provide convergent solutions for the remaining set of
keplerian elements. It follows, from the above discussions, that
the vanishing of the Hessian is not an essential point to set up
the convergence of the solutions of the planetary set of differen-
tial equations.

We should also remark an important difference between both pro
cesses for obtaining equations (4) and (13) respectively:

(4) ‘ZJM(% gen2t)x =0

d%_ , Pt
/3 —_— X =
() G« P

In fact, equation (4) follows fram equation (5) whose linear
term has a (secular) factor 1 multiplying the linear term. On the
other hand the coefficient P(t) in equation (13) appears after com-
bining Po(t) from (14) plus a term fram the second member of this
same equation. In other words, the coefficient of the linear temm
in equation (13) has a trigonametrical structure from his very ori-
gin.

It is clear fram the above discussions, that the solution gi-
ven by equation (13) improve the results provided by the oldest me-
thods. In this sense, the merit of lagrange's method of the varia-
tion of the parameters in his second version must be emphasized.
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